Myosin V exhibits a high duty cycle and large unitary displacement

نویسندگان

  • Jeffrey R. Moore
  • Elena B. Krementsova
  • Kathleen M. Trybus
  • David M. Warshaw
چکیده

Myosin V is a double-headed unconventional myosin that has been implicated in organelle transport. To perform this role, myosin V may have a high duty cycle. To test this hypothesis and understand the properties of this molecule at the molecular level, we used the laser trap and in vitro motility assay to characterize the mechanics of heavy meromyosin-like fragments of myosin V (M5(HMM)) expressed in the Baculovirus system. The relationship between actin filament velocity and the number of interacting M5(HMM) molecules indicates a duty cycle of > or =50%. This high duty cycle would allow actin filament translocation and thus organelle transport by a few M5(HMM) molecules. Single molecule displacement data showed predominantly single step events of 20 nm and an occasional second step to 37 nm. The 20-nm unitary step represents the myosin V working stroke and is independent of the mode of M5(HMM) attachment to the motility surface or light chain content. The large M5(HMM) working stroke is consistent with the myosin V neck acting as a mechanical lever. The second step is characterized by an increased displacement variance, suggesting a model for how the two heads of myosin V function in processive motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Comparison of Natural and Pharmaceutical Ventricular Myosin Activators

Ventricular myosin (βMys) is the motor protein in cardiac muscle generating force using ATP hydrolysis free energy to translate actin. In the cardiac muscle sarcomere, myosin and actin filaments interact cyclically and undergo rapid relative translation facilitated by the low duty cycle motor. It contrasts with high duty cycle processive myosins for which persistent actin association is the pri...

متن کامل

Human myosin Vc is a low duty ratio nonprocessive motor.

There are three distinct members of the myosin V family in vertebrates, and each isoform is involved in different membrane trafficking pathways. Both myosin Va and Vb have demonstrated that they are high duty ratio motors that are consistent with the processive nature of these motors. Here we report that the ATPase cycle mechanism of the single-headed construct of myosin Vc is quite different f...

متن کامل

Force-velocity relationships in actin-myosin interactions causing cytoplasmic streaming in algal cells.

Cytoplasmic streaming in giant internodal cells of green algae is caused by ATP-dependent sliding between actin cables fixed on chloroplast rows and cytoplasmic myosin molecules attached to cytoplasmic organelles. Its velocity (>/=50 micro m s(-1)) is many times larger than the maximum velocity of actin-myosin sliding in muscle. We studied kinetic properties of actin-myosin sliding causing cyto...

متن کامل

Myosin learns to walk.

Recent experiments, drawing upon single-molecule, solution kinetic and structural techniques, have clarified our mechanistic understanding of class V myosins. The findings of the past two years can be summarized as follows: (1) Myosin V is a highly efficient processive motor, surpassing even conventional kinesin in the distance that individual molecules can traverse. (2) The kinetic scheme unde...

متن کامل

Myosin isoforms and the mechanochemical cross-bridge cycle.

At the latest count the myosin family includes 35 distinct groups, all of which have the conserved myosin motor domain attached to a neck or lever arm, followed by a highly variable tail or cargo binding region. The motor domain has an ATPase activity that is activated by the presence of actin. One feature of the myosin ATPase cycle is that it involves an association/dissociation with actin for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 155  شماره 

صفحات  -

تاریخ انتشار 2001